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Abstract
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1 Introduction

Productivity growth in the agricultural sector is recognized as an important driver of struc-

tural transformation and economic growth for poor countries (Gollin, Parente, and Rogerson,

2002). At the same time, agricultural productivity has been hindered by the failure of farmers

in developing countries to use high levels of modern inputs and to adopt improved agricul-

tural practices. Fertilizer is an oft-cited example. African farmers use fertilizers at much

lower rates than farmers in the rest of the world (World Bank, 2008). Similarly, farmers in

the lowest-productivity rice-producing states in Eastern India use less than half the fertilizer

of those in the higher-productivity states in the country.1

Several explanations for limited modern input use and the failure to adopt improved

practices have arisen in the literature. These include procrastination and time inconsistent

preferences (Duflo, Kremer, and Robinson, 2011), high transaction costs due to poor in-

frastructure (Suri, 2011), lack of information and difficulties in learning (Ashraf, Giné, and

Karlan, 2009; Hanna, Mullainathan, and Schwartzstein, 2014), and absence of formal insur-

ance (Karlan et al., 2014). An additional plausible explanation — this time on the supply

side of technology — is that smallholder farmers lack the technologies that are well-suited

to local conditions and therefore factor deepening and adoption of other improved agricul-

tural practices are not optimal. Put differently, can the availability of new technologies that

are better-suited to local conditions crowd in additional inputs and investments in other

productivity-enhancing practices?

In this paper we answer this question by showing that technological innovation in agri-

culture can itself create a factor deepening effect where improved practices and additional

inputs are used in response to innovation. Specifically, we study the dissemination of an in-

novative new rice variety that is well-suited to local conditions in flood-prone areas because

its key feature is flood tolerance. The technology reduces downside risk by decreasing crop

damage during flooding, while at the same time leaving production unaffected during normal

years.

Our experiment was carried out over two years in the eastern Indian state of Odisha. We

randomized the distribution of a new rice variety called Swarna-Sub1 across 128 villages.

This seed variety is nearly identical to Swarna, the popular high-yielding variety grown in

this area, with the only difference being improved flood tolerance.2 Prior to the 2011 wet

1We used the ICRISAT district-level database for all of India to calculate fertilizer use per hectare and rice
yield during 2007. The lowest productivity states producing a large amount of rice are Odisha, Jharkhand,
Chattisgarh, and Assam. Fertilizer use per hectare varies from 73 to 110 kg per hectare in these states. In
contrast, fertilizer use is over double and productivity is substantially higher in other rice producing states
such as West Bengal and Andhra Pradesh.

2Elongation is the natural response of the rice plant to flooding. However, the plant loses its stored energy
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season, a random subset of five farmers in each of 64 treatment villages were provided a small

package of Swarna-Sub1 seed. This “minikit” contained only seeds and a short information

sheet on the properties of Swarna-Sub1. The comparison farmers in the remaining villages

were not provided with any seeds, as Swarna is widely grown in the area.

In general, our main finding is that this technological innovation leads to not only avoided

yield losses under flooding but also significant factor deepening and adoption of improved

practices as indirect benefits in normal years.3 More specifically, we have four sets of find-

ings. First, the new technology modernizes farmers’ production practices. During both

years, treatment farmers are less likely to use the traditional planting method of manually

broadcasting seedlings. Instead, they are more likely to use the more labor intensive manual

transplantation method. Specifically, plots cultivated by treatment farmers are 22% less

likely to be planted using broadcasting in year one. This effect rises to approximately 33%

during the second year of the experiment. In addition, plots cultivated by treatment farmers

are around 14% less likely to be cultivated with traditional seed varieties that are generally

more flood tolerant but lower yielding on average than the Swarna variety. Finally, we show

some evidence that availability of these new seeds causes more area to be cultivated, partly

due to decreased fallowing of low-lying and low quality lands during year two.

Second, we show that improved technology crowds in more fertilizer use. Conditional on

total area cultivated, farmers given access to better technology spend around 10% more on

fertilizer during the second year of cultivation. This effect is entirely concentrated on the

types of fertilizer that are used earlier in the growing season closer to planting time when

the risk of crop loss due to flooding is high.

Our third set of findings is on credit usage and savings behavior. Treatment farmers are

36% more likely to utilize credit during year two. These loans are primarily agricultural

loans distributed by local cooperatives early in the growing season. This effect can plausibly

be explained by either demand or supply side responses in the credit market. That is,

the technology decreases the probability of the low production state, which could increase

the demand for credit. Alternatively, reducing downside risk could increase the supply of

credit by decreasing default risk. Our design does not allow us to distinguish between these

while elongating and fails to regrow after floodwaters recede. Swarna-Sub1 represses this elongation response
and allows the plant to more effectively grow after flooding ends (Xu et al., 2006; Fukao and Bailey-Serres,
2008). Excluding flood tolerance, Swarna-Sub1 is otherwise genetically identical to Swarna — a fact that
has been extensively documented by agricultural scientists (Neeraja et al., 2007; Bailey-Serres et al., 2010;
Mackill et al., 2012). Therefore, the technology reduces downside risk by reducing the loss in yield during
flooding while leaving it unaffected during normal years. This has been shown in agronomic trials (Singh,
Mackill, and Ismail, 2009). We verify the agronomic property of the technology in farmers’ fields using
variation in the length of flooding during year one of our study (Dar et al., 2013).

3We focus our analysis on rice in the wet season because it is the main crop for a vast majority of the
sample. Due to a lack of irrigation only 20% of farmers in the sample grow a dry season crop.
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alternative mechanisms.4

Farmers given access to improved technology also reduce the share of the harvest that is

stored for future consumption by five percentage points. A plausible interpretation of this

finding is that reducing downside risk with innovation decreases the need to store rice in

order to protect against future production variability. Two facts are consistent with this

explanation. First, a simple calculation shows that after harvest households set aside more

rice than is needed to feed their family for the entire year. Second, the effect of the technology

on the storage rate is smaller for households that are at least partially insured by access to

government subsidized rice. However, we cannot fully rule out alternative explanations and

thus we interpret these results with caution.

Fourth, we quantify the effects of crowd-in on productivity by exploiting the fact that the

second year of our experiment was a non-flood year. Given that the new and old technologies

are identical when there is no flooding, there should be no productivity effects in the absence

of any increased investment by farmers. Instead, we show that access to the technology

caused rice yield to increase by approximately 280 kilograms per hectare, or around 10%.

We consider this to be the overall crowd-in effect of the new technology on agricultural

productivity.5

How large are these indirect benefits of the new technology when compared to the ex-

pected agronomic benefits of the technology over time? We use two pieces of information to

calculate expected agronomic benefits: the measured yield benefits obtained on experimental

plots conditional on flooding and the average probability of flooding for fields in our sample.

Starting with the probability of flooding, we use GIS coordinates of plots in our sample along

with 11 years of satellite imagery to approximate the probability that a plot in the sample

will be flooded in a given year. We find this probability to be approximately 0.19. We com-

bine this with evidence from controlled laboratory experiments showing the maximum yield

gain of Swarna-Sub1 under flooding to be approximately 2 tons per hectare (Singh, Mackill,

and Ismail, 2009).6 Combining the two estimates, the expected yield gain due to the purely

4The supply side explanation seems more likely given that loan liabilities are often waived by cooperatives
after years of heavy flooding or drought.

5Separating the effect of a new technology into purely technical (agronomic) and crowd-in effects is
indeed challenging from an empirical standpoint (Beaman et al., 2013). Focusing on new seed varieties
in agriculture, the only attempt at separating the agronomic benefits from gains due to crowd-in rely on
time series decompositions where complementary inputs are measured as a TFP residual in productivity
regressions (Evenson and Gollin, 2003).

6This estimate is in the range of estimates from other controlled on-farm trials discussed in Mackill et al.
(2012). However, this is a very conservative upper-bound estimate for the absolute gains in farmers’ fields
because baseline yields of farmers in our sample under normal conditions are approximately only 60% of
those observed in controlled on-farm trials. In addition, controlled trials show that the two technologies
produce similar yields when submergence does not occur (Singh, Mackill, and Ismail, 2009).
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technical features of the technology is at most 380 kilograms per hectare. This is striking

given that crowd-in induces yield gains of around 280 kilograms per hectare. Put differently,

crowd-in accounts for at least 43% of the overall yield gains of the new technology.

What is the mechanism that explains why these new technologies generate gains through

inducing adoption of other inputs and practices? We posit a simple household model that

highlights two important channels. First, by reducing losses during flooding, the technology

could have a direct effect on the marginal product of inputs. This would naturally generate

factor deepening. Second, there is a downside risk effect which results from the fact that

the technology increases overall output and income in low-productivity states when the

marginal product of input use is low. Reducing downside risk in this way has the effect of

both increasing the expected income (the first moment) and reducing the variance of income

(the true risk factor).

While our experiment is not designed to distinguish between these explanations, we give

suggestive evidence that the risk effect is an important channel. We show that effects on

decision-making exist — but are smaller — on plots that are not cultivated with the new

technology. This result suggests that shifting input demands due to effects on marginal

productivity cannot be the only explanation of the results. However, this is only suggestive

evidence because there is undoubtedly selection on the types of plots where the new tech-

nology is cultivated. We attempt to reduce such selection concerns by including controls for

plot characteristics as well as by selectively dropping the lowest-productivity plots of control

farmers during this analysis.

We also provide some supporting evidence that the expected income channel cannot

explain the observed factor deepening. We exploit variation in flood intensity during the first

year of the study to calculate the duration of the flood shock that would generate a change

in income that is roughly equivalent to the expected productivity gain of the new technology.

This equivalent flood shock should generate effects that are of a similar magnitude to our

estimated effects if our results are explained by the expected income channel. We do not

find evidence for this in the data.

Technologies such as this that make staple crops more tolerant to droughts and floods

are a major recent innovation in agriculture. While the Green Revolution benefited much

of the world, it is well-recognized that rainfed areas that are prone to weather extremes

benefited much less. The development of technologies that are more tolerant to weather

extremes is considered to be one of the key components of the world’s next Green Revolution

(Pingali, 2012).7 Our results suggest that a significant share of the gains from this type of

7Indeed, scientists have recently invested heavily in developing new seed varieties that are tolerant to
various weather stresses. These investments include flood-tolerance in rice (Xu et al., 2006; Hattori et al.,
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technological progress will come from crowd-in effects where farmers are induced to adopt

better agricultural practices and other modern inputs.

This paper is the first to consider how improved technology can help close the gap between

recommended and actual cultivation practices and input use by smallholder farmers. In

particular, farmers fail to adopt improved practices and use few inputs because existing seed

varieties are not well-suited to their local conditions. Technological innovations that improve

seed varieties and make them better-adapted to local conditions help solve part of the puzzle

of inferior cultivation practices and low input use in developing country agriculture.

In addition, our paper presents a new solution to the problem of uninsured risk in de-

veloping country agriculture. Donovan (2014) uses a general equilibrium model to show

that uninsured risk explains low intermediate input use in developing countries. As a result,

uninsured risk contributes significantly to cross-country differences in agricultural produc-

tivity. The leading proposed solution is the reduction of exposure to risk through weather

insurance, particularly index-based insurance. Empirical results indeed support the proposi-

tion that reducing agricultural risk with weather insurance can lead to significant increases

in agricultural investment (Mobarak and Rosenzweig, 2012; Cole, Giné, and Vickery, 2013;

Karlan et al., 2014; Elabed and Carter, 2014). The practical issue that has arisen, however,

has been the repeated considerable difficulties with the uptake of insurance without high

subsidies (Giné, Townsend, and Vickery, 2008; Mobarak and Rosenzweig, 2012; Cole et al.,

2013; Dercon et al., 2014; Karlan et al., 2014). The literature points to several reasons for

this, including high basis risk with index-based insurance, lack of trust in the provider, high

loading cost, credit constraints, and insufficient understanding of the concept of insurance

(Giné, Townsend, and Vickery, 2008; Cole et al., 2013; Cai, de Janvry, and Sadoulet, 2015).

Our results suggest that better technology can itself be an effective way of inducing factor

deepening and adoption of improved cultivation practices.

Finally, our results make a contribution to the literature on possible adaptations to

climate change. Simulation evidence suggests that the risk of weather extremes — including

severe flooding — will become higher as a consequence of climate shocks (Milly et al., 2002;

Hirabayashi et al., 2013). Our results indicate that new technologies that increase resilience

to these events not only represent a potential protection from climate shocks, they also create

benefits by causing productivity gains during normal years.

The rest of this paper is organized as follows. Section 2 develops a basic farm household

model that clarifies the main mechanisms through which technological change leads to factor

deepening. In section 3 we outline the experimental design and the data collection. Section

2009), drought tolerance in rice and maize (Capell, Bassie, and Christou, 2004; Karaba et al., 2007; Nelson
et al., 2007), and cold tolerance in rice (Fujino et al., 2008).
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4 presents results, while section 5 focuses on mechanisms that could potentially explain these

results. Section 6 concludes.

2 A Basic model of crowd-in due to technological change

In this section we develop a farm household model of optimal choices with production un-

certainty and technological change. We first set up a general model and then apply it to the

specific case of the technology in our experiment. Most importantly, the model clarifies the

three mechanisms through which introducing this new technology can change input use: an

expected income effect, a downside risk effect, and a marginal productivity effect. We use

this decomposition when interpreting our empirical results.

2.1 Optimal choice of inputs and savings

The model has two periods. Investment and savings decisions are made in the first period and

output is realized in the second period.8 We assume that the farmer holds an exogenously

determined amount of rice in the first period denoted as h. The farmer chooses between

consuming c, saving an amount s for the next period, and selling the remainder immediately.

The farmer can spend on a continuous amount of input x at a cost of r. Non-farm income

is denoted as w. The discount factor is δ.

The state of nature θ is revealed in the second period after the crop has been planted.

In practice, θ can take several values where each corresponds to a different level of flood

severity. Consumption also occurs in the second period and is denoted as c1.

Introducing a new seed variety results in a change in the production technology. We

denote φ as the amount of the new seed used. Usage of new seed is exogenous, matching the

randomization in our experiment. The production function is f(x, φ; θ), with non-negative

first derivatives, fx ≥ 0 and fφ ≥ 0,∀θ.
The farmer’s maximization problem is

max
c,c1,x,s

U = u(c) + δEu(c1) (1)

8In reality the decision making process of the farm household occurs in three periods. The savings decision
is made after harvest, the input decision is made at or near the time of the next planting, and the harvest
is realized at the end of the growing season. We simplify the model by assuming that the first two events
occur during the same period.
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subject to

c ≤ w − rx+ h− s

c1 ≤ w + f(x, φ; θ) + s

s ≤ h, x ≥ 0, s ≥ 0.

Assuming that the constraints on consumption bind with equality, the two first order con-

ditions for x and s are

ru′(c) = δE [u′(c1)fx] (2)

u′(c) = δEu′(c1), (3)

where the expectation is taken over the states of nature θ. Both savings and input use

are chosen such that the expected marginal benefits in the future period are equal to the

marginal cost in terms of foregone consumption in the present.

The impact of the new techology on input use is equal to

∂x

∂φ
= δ

EfφE [u′′(c1)(Uxs − Ussfx)] + E [u′′(c1)(Uxs − Ussfx)(fφ − Efφ)]− UssE [u′(c1)fφx]

UxxUss − U2
xs

(4)

where fφ and fφx are the marginal effects of using technology φ on the level of production and

the marginal productivity of input x, respectively, and Uxs, Uss, and Uxx are the second order

derivatives of the objective function with respect to x and s. The second-order conditions

for maximization require Uss < 0, Uxx < 0 and UxxUss − U2
xs > 0. As savings and input use

are substitute instruments to transfer rice to the second period, the cross-partial derivative

Uxs = ru′′(c) + δE [u′′(c1)fx] < 0.

Equation (4) shows three effects of the new technology on input use. The first term is

the “expected income” effect due to raising expected production by Efφ. The second term

is a pure “risk” effect due to the differential benefit of the technology across states of nature.

The third term is a “marginal productivity” effect where the technology directly affects the

marginal product of the input. Note that the first two terms represent “insurance effects” in

that they only affect the risk averse farmers, while the third term will take place even with

risk neutral households.9

9Of course, a risk neutral farmer has no incentive to save any output for the second period. In this case
the model collapses to a univariate optimization where s = 0.
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The expected income effect can be simplified to:

Efφu
′′(c)E [Ru′(c1)(fx − r)] (5)

where R is the coefficient of absolute risk aversion in the second period. From (2) and (3),

E[u′(c1)fx] = rEu′(c1), showing that the income effect is null when utility exhibits constant

absolute risk aversion, and is positive with decreasing absolute risk aversion. The intuition

is that an expected increase in second period income due to the new technology reduces the

marginal utility of increased production and of savings in similar orders of magnitude, and

hence has either a null or a small positive effect on input use.

Similarly, the risk effect can be simplified to:

UssE[Ru′(c1)(fφ − Efφ)(fx − r)] + δE[Ru′(c1)(fx − r)]E[Ru′(c1)(fφ − Efφ)] (6)

Under constant absolute risk aversion, the second term is null, and the first term is pro-

portional to the covariance between increased production (fφ) and the marginal value of an

additional unit of input (u′(c1)fx). The risk effect is positive for technologies that increase

production in states of nature where the marginal value of the input is low and thus the loss

to the farmer from investing in the input is large. The intuition for this is that investment

in the input that turns out to be unproductive is less painful to the farmer because the tech-

nology increases production, thus partially stabilizing consumption. Importantly, one can

show that this risk effect is strictly increasing with the coefficient of absolute risk aversion.10

The response of savings to the new technology can be written:

∂s

∂φ
= −δE[u′′(c1)fφ]

Uss
− Usx
Uss

∂x

∂φ
(7)

The second term shows an effect that is opposite and proportional to the effect on input

use, that directly comes from their substitute roles in moving income to the second period.

The first term represents a decrease in savings due to the expected increase in income in

the second period (even without any increase in input). This term contains an expected

income effect Eu′′(c1)Efφ and a risk effect E[Ru′(c1)(fφ − Efφ)]. The expected income

effect is negative. The risk effect is also negative if the technology increases production more

in states with lower consumption, i.e., has any risk-reducing property. The intuition for

this effect is that by increasing the expected level of production in the second period, the

technology crowds out savings, especially for more risk averse farmers.

10One immediate implication is that a technology that increases productivity more during good years could
have the opposite effect on input use. The reason for this is that investing in the input actually increases
the variance of consumption.
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In the particular case of the technology we study, results from both experimental plots

and the first year of our experiment confirm that Swarna-Sub1 is indistinguishable from

Swarna when flooding does not occur. Combining this with the fact that more severe floods

lead to lower production and thus lower consumption delivers the prediction that the increase

in production from the technology (fφ) occurs in states where the marginal utility of con-

sumption (u′(c1)) is large.11 Assuming that the marginal product of the input is also lower

during more severe flooding, the covariance term in equation (6) is predicted to be negative,

making the overall risk effect positive. Thus, an important prediction from the model is that

the better technology leads to an increase in the quantity of the input because it reduces

the marginal damage — in terms of lost consumption — that resulted from investing in an

input that turned out to be unproductive.

The marginal productivity effect is an entirely different channel through which the inno-

vation could lead to factor deepening. Little is known empirically about the sign or size of

the term fxφ. As equation (4) highlights, Swarna-Sub1 will increase input use if it raises the

marginal product of the input, particularly in states where the marginal utility of consump-

tion is high. As an example, if Swarna-Sub1 is a technical complement to fertilizer, then

even farmers with low levels of risk aversion will use more fertilizer.

We provide some non experimental evidence distinguishing between these two explana-

tions of our results in the empirical analysis. For this, we take advantage of the fact that

treatment farmers continue to cultivate some plots with current non-flood-tolerant seed vari-

eties even after gaining access to Swarna-Sub1. Any technical relationship in the production

function between inputs and Swarna-Sub1 is eliminated on these plots. Put differently, the

marginal productivity effect on these plots is plausibly zero. However, the risk effect still op-

erates because it is a function of the overall increase in production induced by Swarna-Sub1,

making a yield effect on these plots potentially positive.

2.2 Introducing credit

We do not formally model the demand for agricultural credit. Instead, we discuss how intro-

ducing the new technology can affect utilization of agricultural credit in a credit environment

similar to the one faced by farmers in our sample.

There are two important characteristics of the credit market for farmers in our sample.

First, local agricultural cooperative societies are the most popular source of credit. 45% of

loans during year one of the experiment came from cooperative societies. Since cooperatives

have limited resources, borrowing constraints are likely to be relevant. Second, limited

11Implicit in this statement about the correlation between the productivity increase and the marginal
utility of consumption is an assumption of imperfect consumption smoothing, as in Townsend (1994).
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liability is a feature of these loans. In particular, 40% of loans from year one were renegotiated

or had liability fully waived.12

Credit could therefore be realistically introduced into the model by allowing both bor-

rowing constraints and limited liability. Specifically, the household borrows an amount b,

where an exogenous borrowing constraint forces b ≤ b̄. Assuming that γ is the degree of

limited liability, the household must pay back (1−γ)(1+v)b during the second period, where

v is the interest rate. Since loans are most likely to be forgiven after flooding, it is plausible

to assume that γ = 0 in the event that flooding does not occur.

Under this setup, there are two plausible mechanisms which could explain how introduc-

ing the new technology will influence credit usage. First, by increasing production during

the flood state, the technology increases consumption, thus decreasing the marginal utility

of consumption. This makes it less painful to have liabilities and therefore increases demand

for credit. This effect becomes less relevant as limited liability increases because it effec-

tively acts as insurance by further increasing consumption during flooding. Second, making

production less risky could induce cooperatives to make more credit available to treatment

farmers — an increase in b̄. This supply effect would increase credit utilization as long as

credit constraints were binding prior to introduction of the technology.13

While the frequency of limited liability in our data suggests that the credit supply mech-

anism is most relevant, our empirical analysis cannot distinguish between these two mecha-

nisms. Also, increased uptake of credit could play a role in decreasing savings of stored rice:

additional credit could further crowd in input use at planting, which increases output and

decreases the need for precautionary savings (Fulford, 2013).

3 Experimental design and data

In this section we present the details of the experimental design and sampling. In addition,

we outline the timing of data collection and present summary statistics on both village and

household characteristics.

12Loans from agricultural cooperative societies in areas where heavy flooding occurred were nearly twice
as likely to have their terms changed compared to loans from other sources. The probability of renegotiation
is also increasing in the duration of flooding.

13Boucher, Carter, and Guirkinger (2008) show theoretically that uninsured risk can induce lenders to
offer loan terms that effectively crowd out a large share of the credit market. Carter, Galarza, and Boucher
(2007) use simulations to suggest that weather insurance can indeed crowd in credit supply in rural Peru.
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3.1 Experimental design

Our sample is drawn from villages in flood-prone areas of the Bhadrak and Balasore districts

of northern Odisha. This area is suitable for the study because flood risk is high, Swarna

is widely grown, and Swarna-Sub1 was still unavailable to farmers in May 2011 when the

project was initiated. The villages were identified from two sources. In Bhadrak, satellite

imagery was matched to a GIS database of villages to identify villages that were affected by

flooding.14 A random subset of 64 affected villages was selected for inclusion in the study.

In Balasore, we used a list of flood-prone villages established by our local NGO partner to

randomly select 64 villages.15 Figure 1 displays a map of the study area and the villages

included. As is seen in the map, almost all of the study villages are in low-lying coastal

areas.

We first randomly divided the 128 sample villages into treatment and control groups.

This village-level randomization was stratified by blocks, which are administrative units

that consist of 100-200 villages. The 128 sample villages are spread across 8 blocks. A

local government official was then visited in all villages to generate a list of 25 farmers

using Swarna and affected by flooding. Using this list, 5 farmers were randomly selected

in each of the 64 treatment villages to receive minikits containing five kilograms of Swarna-

Sub1 seeds.16 The seeds were delivered in June 2011, which is right before planting. Our

comparison group consists of ten randomly selected non-recipients in treatment villages and

five randomly selected farmers in the 64 control villages.17

In addition to the minikit, treatment farmers were provided with a two-page information

sheet on Swarna-Sub1. The information sheet had two important components. First, we

included pictures from farmer-managed trials showing the clear productivity gains of Swarna-

Sub1 after flooding. Second, the information sheet conveyed that other than flood tolerance,

Swarna-Sub1 is identical to Swarna. Importantly, the sheet did not suggest any management

practices such as how to plant the field or how much fertilizer to use. Instead, farmers were

informed that Swarna-Sub1 can be managed exactly like Swarna.

Importantly, several villages in the sample were affected by heavy flooding during Septem-

ber 2011. Approximately 40% of plots in our sample were fully submerged — and detectable

with satellite images — during the flood. While inundation occurred in both districts of the

14We used RADARSAT images (100m resolution) from 2008 to identify villages affected by flooding.
15The satellite imagery of historic floods was not available at the time of village selection.
16Five kilograms of seed is sufficient to cultivate 0.1 to 0.2 hectares, or approximately 10-20% of average

cultivated area. This is the standard minikit size for cereal crops in India.
17We show in Table A9 that our main outcomes are not significantly different between non-recipients in

treatment and control farmers. Thus, the technology did not generate significant within-village spillover
effects. Therefore, we retain both sets of non-recipient farmers in all specifications.
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sample, the heaviest flooding occurred in the southernmost district of Bhadrak.

The implementing NGO did not provide additional seeds to treatment farmers after

year one. Given that Swarna-Sub1 seeds were not available on the market, the only way

to continue using the variety was to save a portion of the year one harvest as seeds for

cultivation during year two.

3.2 Data collection

Our first follow-up survey was conducted in March 2012 after the first year’s crop was

harvested. A total of 1,248 farmers were reached, achieving a response rate of 97.7%.18

Compliance with the treatment during the first year was near universal. Only 2 out of

the 320 treatment farmers declined to receive the minikit and cultivate it on their land.

Treatment farmers cultivated approximately 14% of their land with Swarna-Sub1.

The second follow-up survey was carried out one year later after the growing season for

year two. A total of 1,237 of the farmers surveyed during 2012 were reached again during this

survey. Important outcomes of interest are area cultivated, farm-level information on inputs,

allocation of output across uses, and credit utilization. In addition, a plot-level module on

seed variety choice, planting methods, and production was administered.

Compliance with the treatment during the second year — defined as continued cultivation

of Swarna-Sub1 — was high. 76% of minikit recipients cultivated the technology during year

two.19 The average number of plots sown with Swarna-Sub1 amongst minikit recipients was

1.5. Average land area cultivated with Swarna-Sub1 was 0.33 hectares, or approximately a

third of average landholdings. Conversely, only 10.1% of control farmers cultivated Swarna-

Sub1 during year two. We show in Table A1 that this was a direct result of seed transfers from

original recipients: 13.3% of control farmers cultivated Swarna-Sub1 in treatment villages

and only 3.3% did so in control villages. Given the low levels of non-compliance across the

two years of the study, we take a conservative approach and report intention-to-treat (ITT)

results throughout the paper.

18This small level of attrition is balanced across treatment and control. Enumerators were not able to
contact farmers in one control village due to disagreement with local village leaders about participation in
the study. The results reported are for the remaining 127 villages.

19The most common reason for disadoption was crop loss during year one. Swarna-Sub1 is not suitable for
low areas where water remains stagnant for more than two weeks after flooding (Singh, Mackill, and Ismail,
2011). Swarna-Sub1 that was planted in these areas during year one was lost.
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3.3 Summary statistics

Villages in the sample are fairly representative of the low-lying villages in the flood-prone

states of Bihar, Odisha, and West Bengal. Table 1 shows village characteristics from the

2001 census.20 With the exception of village size, the sample villages are roughly similar to

all villages in low-lying areas of the three states.

Turning to the household-level data from our sample, Panel A of Table 2 reports summary

statistics of variables that are likely predetermined, but were collected during the first follow-

up survey. Most importantly, treatment and control households look similar on most pre-

determined characteristics. Farms in the sample are small. Average landholdings are less

than one hectare. While electricity is fairly widespread, few households have access to piped

water. Most households rely on either village or private tubewells for water. Approximately

56% of households have Below the Poverty Line (BPL) cards, which give them access to

government supports such as a monthly allotment of subsidized rice. Panel B of the table

shows some characteristics of the plots held by farmers in our sample. Farmers cultivate an

average of around 3.5 plots and a third of those are in lower-lying areas. On average, farmers

report that a plot was flooded for around 5.5 to 6 days during the first year.

4 Results

This section presents results supporting the argument that improved technology modernizes

agriculture by increasing the use of modern agricultural practices and inputs. We first outline

the estimation approach and then present the main results on cultivation practices, fertilizer

use, rice storage, and credit. We then show that the technology leads to substantial gains in

land productivity — even in year two when there was no flooding. We then benchmark the

year two productivity gains due to crowd-in against the expected technical gains that arise

from flood tolerance. Finally, we also consider whether the additional investments that were

induced translate into profitability gains rather than just productivity gains.

4.1 Estimation Approach

Our main approach is to use the random distribution of Swarna-Sub1 seeds to explain man-

agement choices at both the farm and plot level. The baseline specification is therefore

yivb = β0 + β1treatmentivb + αb + εivb, (8)

20Villages in the other three states were included if the elevation was below 56 meters, the maximum
elevation in our sample of villages.
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where yivb is an outcome observed for farmer i in village v and block b, and αb is a fixed

effect for the block, which was a stratification variable for the village-level randomization.

The error term is clustered at the village level since this corresponds to the first tier of

randomization. We continue to use the farmer-level treatment indicator when outcomes are

observed at the plot level. The estimate of β1 in the plot-level regressions therefore represents

an average effect across all plots, not just the plots cultivated with Swarna-Sub1.

This intention to treat (ITT) estimate of β1 would obviously be attenuated if there were

either significant disadoption by minikit recipients or adoption by non-recipients. As we

noted above, compliance was nearly 100% in the first year of the study. Given the small

amount of non-compliance during year two, instrumental variables estimates of treatment

on the treated (TOT) effects would be larger by a factor of approximately 1.5. We report

the ITT estimates as they carry the most policy relevance when dissemination of the new

technology naturally leads to some disadoption due to imperfect targeting.

We only use the variation generated by the experiment by including only the treatment

indicator and the strata (block) fixed effects in our main specifications. However, we show in

Tables A2 to A6 that our main results are unaffected by controlling for household covariates.

Finally, when our data allow, we estimate our main specifications separately for years one

and two.

4.2 Cultivation practices and inputs

The improved technology led to a small expansion in cultivated area. Column 1 of Table

3 shows that access to Swarna-Sub1 led to an immediate increase in area of 0.07 hectares

or around a 9% increase. Panel B shows that this effect rose only slightly during year two.

Overall, the result suggests that some land is left uncultivated due to flooding risk and that

improved technologies that address this brings this land into production. Also, we show in

Table A7 that treatment farmers were significantly less likely to take land out of production

(fallowing) during the second year, in particular plots that are low-lying and considered to be

lower quality. The decreased likelihood of taking these flood-prone lands out of production

partly explains the observed effects on cultivated area during year two. Table A8 shows

that the area effect is driven by cultivation of additional plots, not increased area of existing

plots.

While Swarna is the most popular rice variety grown in the sample region, farmers often

use local “traditional” varieties that are not considered modern and high-yielding. These

varieties have a high capacity to survive during flooding due to their ability to rapidly
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elongate when submerged (Voesenek and Bailey-Serres, 2009).21 We show two pieces of

evidence in the online appendix that flooding risk is one of the reasons this traditional

technology is still used. First, when asked, farmers directly state that one of the main

reasons for adopting these varieties is their tolerance to flooding (see Figure A1). Second

in Figure A2 we show that these varieties had higher survival rates in heavily flooded areas

during year one.

Not surprisingly, column 3 of Table 3 shows that plots cultivated by treatment farmers

were less likely to be sown with Swarna by 15.7 percentage points and 10.1 percentage points

in years one and two, respectively. More interestingly, there was an immediate reduction in

the use of traditional varieties by 2.9 percentage points (14%) during year one and 4.1 per-

centage points (or 14.6%) during year two (column 4). Thus, the crowding out of traditional

varieties is one of the channels through which the innovation affects output.

In addition to modernization of seed varieties, the technology also led to a moderniza-

tion of planting methodology. Column 5 shows that farmers given access to the improved

technology were less likely to opt for the cheaper, less productive, and traditional planting

method of manually broadcasting seeds. Instead, treatment farmers were more likely to use

the more labor intensive method of manually transplanting seedlings.22 Panel A shows that

plots cultivated by treatment farmers were 2.2 percentage points (around 22%) less likely to

be sown using the broadcasting method during year 1. During year 2, this effect rose to 6.3

percentage points, or around 33%.

Improved technology also induced greater fertilizer use during year two.23 Column 1 of

Table 4 shows that conditional on cultivated area, total fertilizer expenditures rose by 397

Rs or 10.5% for treatment farmers. Columns 2 through 5 show that this increase in fertilizer

expenditure is almost entirely concentrated on phosphate (DAP) and potassium (MOP)

fertilizers. We show in Figure A3 that phosphate and potassium fertilizers are generally

used earlier in the growing season.24 Combining these two facts, the improved technology

21We have yet to distinguish between flash flooding, where Swarna-Sub1 performs well, and stagnant water
accumulation. Flash flood areas are those where flooding occurs and water recedes after a period of one
day to around two weeks. Stagnant water areas are those where water remains partially submerging the
crop even after floodwaters recede. Our findings in Dar et al. (2013) and other research (i.e. Singh, Mackill,
and Ismail (2011)) show that Swarna-Sub1 does not tolerate stress due to stagnant water of more than
approximately 15 days.

22Transplanting involves raising seedlings on a small portion of land, pulling and bundling the seedlings
after approximately three weeks, and planting the seedlings manually in the main field. While broadcasting
is a popular planting technique in flood-prone areas due to a lower labor requirement, increased competition
from weeds reduces yields (Khush, 1997; Rao et al., 2007).

23Our first follow-up survey only included fertilizer use on the Swarna-Sub1 plot of treatment farmers and
the largest Swarna plot of control farmers. Due to plot selection issues, we do not use these data to estimate
effects on fertilizer usage.

24This is also consistent with basic agronomic recommendations based on the functions of the different
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resulted in increased fertilizer use only for fertilizers that are used earlier in the growing

season when the risk of exposure to flooding is highest. This provides further evidence that

this technology led to additional investment near planting and helped close the gap between

actual and recommended fertilizer application.25

4.3 Storage and credit

Farmers in the sample store large amounts of rice after each harvest relative to their annual

consumption. The average total rice harvest amongst cultivators in our sample was 2,945 kg.

An average of 1,711 kg of the harvest was consumed or set aside for future consumption.26

This amount is enough to feed roughly 11 adults for a year.27 Average household size in the

villages in our sample is 5.3 persons. While we acknowledge that stored rice is a liquid asset

that can be sold upon family need, one plausible explanation of this large amount of rice

storage is the need to insure against future consumption variability.

Farmers receiving Swarna-Sub1 store a smaller share of their harvest for future consump-

tion. Column 1 in Table 5 shows that after year one, treatment farmers stored 2.6 percentage

points less output for consumption. While this effect is not quite statistically significant,

Panel B shows that the effect after year two rises to 5 percentage points and is statistically

significant.28 The magnitude of the effect is not trivial. It amounts to approximately 150

kilograms, or enough to meet the consumption needs of one household member for the entire

year. Column 2 of Panel B shows that the storage effect during year two is concentrated

amongst households that do not hold Below the Poverty Line (BPL) cards. BPL cards serve

as consumption insurance because they entitle households to purchase 30 kilograms of rice

per month — an amount that is enough to feed approximately two adults — at highly sub-

sidized rates.29 This additional heterogeneity is consistent with the technology decreasing

nutrients. In particular, phosphorous (DAP) and potassium (MOP) contribute mostly to soil conditioning
and root development, and are applied early in the growing season. In contrast, nitrogen — in the form of
urea — contributes to healthy plant and leaf development and therefore is mostly applied later in the season
after the plant is more fully developed and leaf growth is occuring.

25Fertilizer application in our sample is still below recommendations in spite of high subsidies. An ap-
proximate recommendation for our sample area is a per-hectare application of 80 kg of nitrogen (N), 40
kilograms of phosphorous (P), and 40 kilograms of potassium (K). The median farmer in the control group
during year two applied 57.8 kg of nitrogen, 34 kg of phosphorous, and 15.5 kg of potassium for each hectare
of land cultivated. In contrast, the median farmer in the treatment group applied 59.7 kg of nitrogen, 39.1
kg of phosphorous, and 18.3 kg of potassium.

26Since our survey was conducted shortly after the harvest and post-harvest production practices, most of
the amount indicated for consumption had yet to be consumed at the time of the survey.

27This calculation is based on an average annual consumption in rural Odisha of 158 kilograms per capita
per year, as reported in the 64th round of the National Sample Survey.

28A similar regression where the dependent variable is the share of rice sold delivers a coefficient estimate
of .047. Thus, much of the output that was not stored for consumption was instead sold.

29The price of BPL rice is 1-2 Rupees per kilogram while the market price of similar rice is 20 Rupees or
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the need to use storage as a form of consumption insurance.

In addition to reducing storage rates, improved technology that reduces downside risk

increases the uptake of agricultural credit. Columns 3-5 of Table 5 focus on binary indicators

of household access to credit. Column 3 shows that credit uptake increased by 6.3 percentage

points immediately during year 1, but the effect is not statistically significant at conventional

levels. Given average credit uptake of 43%, this effect amounts to about a 15% increase.

Average uptake of new loans across the entire sample was much smaller (19%) during year

two. However, Column 3 in Panel B shows that treatment farmers were 6.8 percentage points

more likely to take out a new loan during the time between planting and harvesting for year

two. This amounts to a meaningful 36% increase in credit uptake. Columns 4 and 5 show

that a large portion of the effect is driven by loans originating from agricultural cooperatives.

In contrast to inputs, the results on rice storage and credit uptake are unlikely to be

explained by shifts in the marginal productivity of inputs. Rather, storage offers insurance

against low or zero production during flooding. By increasing the overall level of production

during flooding, the technology substitutes directly for storage. Utilization of agricultural

credit increases either due to a demand effect where the increase in expected production in

the future makes borrowing more desirable, or a supply effect where credit constraints are a

function of the borrower’s expected production.

4.4 Effects on productivity

The results indicate that improved technology induces the adoption of several other modern

inputs and management practices. A natural next question is to ask how these changes

translate into productivity gains.

There is a noticeable increase in yield for plots cultivated by farmers with access to

Swarna-Sub1. Figure 2 displays the estimated kernel densities of yield by treatment status

for both years of the study. Focusing on year one, the severe flooding in part of the sample

is apparent as there is a significant mass of the distribution at low yields. However, there is

also a clear rightwards shift in the distribution of yield for treatment farmers. This effect is

a combination of the purely technical gains in flooded areas with the gains due to the small

crowd-in effects reported above.

Panel B shows that there is a clear rightwards shift in the distribution for treatment

farmers during year two when flooding did not occur. This effect occurs throughout the dis-

tribution of yield, suggesting that it is not concentrated on the lowest or highest productivity

farmers.

higher.
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The regression results in Table 6 are consistent with the graphical evidence. Column

1 shows that the technology led to an increase in yield during year one of 315 kilograms

per hectare, or around 14%. In year two, when flooding did not occur and all productivity

gains are due to crowd-in, treatment farmers harvested an average of 283 kilograms more

per hectare cultivated. This translates into a 10% increase in productivity.

As a method of investigating whether the crowd-in effect is a channel through which

improved technology affects productivity, we sequentially add our main outcome measures

as regressors to the yield equation. Adding these endogenous outcomes as controls should

attenuate the reduced form productivity effect if the effect is partly operating through these

channels.30 Of course, the coefficients on the endogenous outcome variables represent merely

correlations and cannot be interpreted causally.

The conditional productivity effect is substantially lower than the unconditional effect.

Columns 3-5 of Table 6 show that accounting for the observed changes in production practices

substantially attenuates the productivity effect. In addition, the goodness of fit of the

regression approximately doubles. Therefore, the crowd-in effect is an important determinant

of the overall productivity effect of the technology.

How large are these indirect effects of the new technology? We next benchmark this

crowd-in effect against the expected yield gains from controlled laboratory experiments on

agricultural experiment stations. Agronomic benefits reported by experimental stations are

importantly measured while input use is held constant and thus the only advantage of the

improved technology occurs through its technical superiority. Singh, Mackill, and Ismail

(2009) show that the maximum yield benefit of Swarna-Sub1 under 12 days of flooding is

approximately 2 tons per hectare. In addition, the absolute magnitude of the yield benefit

in farm-trials declines as flood severity worsens beyond 12 days.

To generate the probability that a field in our sample would be flooded during the wet

season, we use satellite imagery from past flooding. We used imagery of all flooding in the

two districts from 2002-2008 and 2011-2014 to identify areas affected by flooding.31 We

overlaid these flood areas with the GIS centroid of 1,123 plots cultivated by farmers in our

sample. These GIS coordinates were collected for the Swarna-Sub1 plot of treatment farmers

and the largest Swarna plot of control farmers. Figure 3 shows the distribution of flooding

for these plots across the 11 years for which we had satellite imagery. Notably, the most

30This approach has been used to investigate the channels through which education affects voting (Milligan,
Moretti, and Oreopoulos, 2004) and the channels through which early-life rainfall shocks affect outcomes
later in life (Maccini and Yang, 2009). In our case the reduced form treatment effect that remains after
conditioning on inputs can be thought of as a measure of TFP.

31These data come from the MODIS satellite and have a resolution of 250M. The data were downloaded
at http://floodobservatory.colorado.edu/Modis.html. A more detailed description of the data is available on
this website.
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severe flood year was 2011, the first year of the experiment. Approximately 40% of plots

were detected as flooded using the satellite images during 2011. Also, there was almost no

flooding during the following year: only 2% of plots were detected as flood-affected during

2012.

The overall average probability of flooding across the 11 years is 0.19, which is the

horizontal line displayed in Figure 3. This average probability is similar across the Swarna

and Swarna-Sub1 plots. Combining this with the estimated yield advantage of 2 tons per

hectare during flooding, 380 kg per hectare is a very conservative upper bound estimate of

the expected technological gains due to agronomy. Thus, we estimate that the 283 kilogram

per hectare gain due to crowd in effects represents no less than 43% of the overall gains from

the innovation.

An implication of this finding is that estimated returns of new technologies that do

not account for how farmers re-optimize their decisions will significantly understate the

gains from new technologies. In addition, this result further demonstrates the value of

using field experiments to measure the impacts of new agricultural technologies. Studies on

experimental plots that don’t account for re-optimization of farmers will not deliver the true

causal effects of new technologies.

Including these productivity effects, we have shown that the flood-tolerant rice variety has

significant impacts on several outcomes of interest. However, we have thus far only considered

the outcomes individually and have not adjusted the p-values for multiple inference. In

Table A10 we show all regression results for the 20 agricultural outcomes measured by our

second year follow-up survey. More importantly, we show that adjusting p-values for multiple

inference by controlling the false discovery rate does not significantly alter the conclusions

of our hypothesis tests (Benjamini, Krieger, and Yekutieli, 2006; Anderson, 2008).

4.5 Are additional investments profitable?

We have shown that increased investment is an important channel through which improved

agricultural technologies lead to substantial gains in productivity. In particular, average

yield of farmers given access to flood-tolerant rice increases by around 283 kg per hectare

(Table 6). This amounts to an increase in revenue per hectare of 2,969 Rs when applying the

average output price from our survey of 10.5 Rs per kg. However, the increased investments

that drive this increase, such as using more fertilizer or changing planting techniques, are

indeed costly. Therefore, the gains in profitability are undoubtedly lower than the measured

productivity gains.

Additional calculations suggest that the incremental costs associated with the observed
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management changes represent less than half of the gains in revenue. We estimate that

the cost increase resulting from the observed changes in management is around 1,103 Rs per

hectare. This represents only 37% of the estimated revenue gains and therefore suggests that

the technology does lead to gains in profitability. We explain the details of this calculation

in the remainder of this section.

Fertilizer use: We rely directly on our estimates in Column 1 of Table 4 to generate an

increase in fertilizer cost of 397 Rs. Given that farmers cultivate an average of one hectare,

we also use this value as the increase in fertilizer costs per hectare.

Labor for fertilizer: Our first follow-up survey included information on total labor use —

including family labor — for physically applying fertilizers. We calculate that on average,

for each 100 kg of fertilizer applied, a total of 6 person days are required. Applying this

number to the increase in fertilizer usage in kilograms rather than expenditures, we obtain

an increase in labor demand of 1.48 days. Valuing all labor at the average wage of 161 Rs

per day, this amounts to an increase in labor costs of 238 Rs per hectare.

Labor for planting: Our first follow-up survey also included information on labor used

for sowing for a single plot of each respondent. We simply compare average labor costs per

hectare between plots that were planted using the broadcasting and transplanting methods.

A caveat of this exercise is that the comparison is clearly non-experimental.32 We find that

labor costs for transplanting are larger by 5,670 Rs per hectare — an approximate three

fold increase relative to the broadcasting method. Multiplying this value by the decrease in

the probability of broadcasting of .063, we obtain an increase in average planting costs per

hectare of 357 Rs.

Loan interest: Our second follow-up survey asked the annual interest rate for each loan.

We combine this with the value of the loan to estimate annual interest costs for each farmer

in the sample.33 We simply regress this value on the same set of regressors used in our main

specifications. Doing this delivers an increase in annual interest costs of 82 Rs.

32It is most likely that this simple comparison of means overstates the effect of transplanting on planting
costs. Farmers would be more likely to use transplanting with higher-yielding varieties that may induce
more labor use at planting independently of choice of planting technique. The estimate is also conservative
because one of the benefits of transplanting is reduced weed populations. Consequently, a portion of the
increase in planting costs that results from transplanting is offset by reduced costs of weeding.

33This is only an estimate because our survey was carried out immediately after harvest and thus we do
not measure the timing of repayment.
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Seed cost: Treatment farmers in our sample had no choice but to use Swarna-Sub1 from

their previous harvest. The effective price of seeds in this case is their opportunity cost,

which is the price that would have been obtained had the output been sold as rice instead.

As we show below, farmers report an average increase in output price for Swarna-Sub1 of

0.46 Rs per kilogram. Combining this with an approximate seed rate of 62 kilograms per

hectare, the additional cost of Swarna-Sub1 seeds is around 29 Rs per hectare.

5 Mechanisms

Our results suggest that an improved technology that decreases the downside risk of produc-

tion causes farmers to re-optimize along several dimensions. While the results are consistent

with our model where reducing risk is one of the important mechanisms, there are some

other equally plausible explanations. In this section we consider some alternative tests to

investigate whether the data are consistent with these explanations. Importantly, these tests

cannot definitively point to risk as the only explanation of our findings. We are therefore

cautious to interpret the findings as suggestive that only mechanisms other than risk are not

entirely consistent with the data.

5.1 Shifts in the marginal productivity of inputs

Returning to the theoretical model, the marginal productivity effect is one of the channels

through which introducing a risk-reducing seed variety could influence input use. If the new

variety is a technical complement to an input like fertilizer, then the variety could naturally

increase fertilizer use independent of its risk-reducing property. We attempt to rule this out

as the only explanation for our results by considering plots that were cultivated by treatment

farmers, but were not cultivated with Swarna-Sub1. We estimate our main effects on this

sub-sample of plots. If the results are explained by how the technology itself changes the

marginal productivity of these inputs, then there is no reason to observe any effects for these

plots.

While the effects are smaller, the effects on productivity, broadcasting, and DAP fertilizer

expenditures all persist on plots where Swarna-Sub1 was not used. Column 1 of Table 7 shows

a yield effect of 173 kilograms per hectare, or approximately 6%. Columns 2 and 3 show that

there is no substitution away from other rice varieties on these plots, suggesting that any

effects on inputs are not due to which varieties were grown.34 Column 4 shows that there

remains a 4.2 percentage point decrease in the probability of using broadcasting by treatment

34Table A11 shows that the results are robust to controlling for variety fixed effects.
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farmers on the plots not cultivated with the new technology. Finally, plot-level expenditures

on DAP fertilizer are higher by around 100 Rs for treatment farmers on non-Swarna-Sub1

plots (column 7). In combination, these results help to rule out the mechanism where the

new technology simply increases the marginal products of inputs.

However, an important concern with this approach is the endogeneity of plot choice. If

treatment farmers allocated Swarna-Sub1 to their worst lands, then the treatment-control

comparison on the remaining plots would artificially favor finding effects of treatment on

these outcomes.35 As the first approach to reducing these selection concerns, Table 7 includes

controls for self-reported land quality, relative elevation (or slope) of plots, land ownership,

and area of the plot. The main effects in the table are therefore all conditional on these

potential sources of selection.

We address concern about selection on unobservables by constructing a simple simulation

to assess the degree to which these results could be driven by plot-level selection. Treatment

farmers cultivate on average 0.235 fewer plots with non-Swarna-Sub1 varieties. This is

fairly modest since control farmers cultivate an average of 3.6 plots with these same types

of varieties. We construct a simulation where we take each control farmer in the sample

and randomly drop one of their plots with a probability of 0.235. We make the simulation

exercise as conservative as possible by generating a random number from the unit interval

for each control farmer and dropping their lowest-yielding plot if that random number is

less than 0.235. This results in a trimmed sample where 184 plots are dropped from the

analysis. Importantly, trimming balances the total number of plots across treatment and

control farmers in a way that can only reduce the treatment effect.

We show in Table A14 that while conservatively trimming the sample in this way decreases

the main coefficients of interest, the estimates remain statistically significant at at least the

10% level. This provides suggestive evidence that the comparison of non-Swarna-Sub1 plots

across treatment and control farmers is not being driven entirely by plot selection.

5.2 Changes in mean yield rather than variance

The technology we study decreases downside risk without affecting yield during “good years”

when flooding is absent. As a result, the technology both decreases the variance in output

and increases mean yield. One potential explanation of our findings is that they could be

35We show in Table A12 that the plots cultivated with Swarna-Sub1 were on average smaller, more likely
to be land that was owned by the farmer rather than sharecropped and less likely to be on the lowest land
in the village. However, Table A13 shows that the plots not cultivated with Swarna-Sub1 are roughly similar
on these observables. A plausible explanation that reconciles these two results is that minikit recipients
cultivated more plots as a result of obtaining the new technology. While those new plots were on average
different than the other plots, this does not affect the remaining non-Swarna-Sub1 plots.
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driven by this income effect where the expectation of increased output at the end of the

season changes agricultural decision-making. The ideal experiment to decompose between

these two channels would involve promising compensation to control farmers in the amount

equal to the gain in expected output from Swarna-Sub1. This gain in expected output

depends on both the yield advantage of Swarna-Sub1 and the total land area cultivated with

it. It is important to note that compensating control farmers before planting in the amount

equal to the expected output gain is likely conservative because of discounting, the increased

certainty of compensation relative to uncertain productivity gains in the treatment group,

and the liquidity value of having additional capital before planting.

We exploit natural variation in our data to simulate an experiment where compensation

is provided before planting. During the first year of the study there was spatial variation in

the intensity of flooding, even within fairly small geographic areas. We use this variation to

generate a measure of the flood shock (or lack thereof) that would have been equivalent to

the gain in expected output caused by Swarna-Sub1. Our calculation in Section 4.4 suggested

that an upper-bound estimate for the purely agronomic gain of Swarna-Sub1 was 380 kg per

hectare. Combining this with the fact that treatment farmers cultivated an average of 0.33

hectares with Swarna-Sub1 during the second year, the required compensation to turn off

the expected output channel would be equivalent to 126.7 kilograms of rice. Table A15 shows

that an additional day of flood exposure during the first year caused the total production of

control farmers to decrease by 90.3 kg. Therefore, a decrease in flood exposure by 1.4 days is

equivalent to the expected output gain from Swarna-Sub1. If our results are entirely driven

by the mean-increasing property of the technology, then we would expect the effects of being

exposed to 1.4 fewer flood days for control farmers to be equivalent to our measured effects

of giving the new technology.

The results do not appear to be entirely driven by the mean-increasing property of

Swarna-Sub1. Table A16 compares the main effects of the Swarna-Sub1 treatment with

the effects of an equivalent flood shock in the control group — which is the farmer’s area-

weighted flood exposure divided by 1.4. Total fertilizer expenditure is the only outcome that

decreases significantly with an additional 1.4 days of flood exposure. However, the negative

effect of an additional 1.4 days of flooding is around 1/5th the size of the effect of the Swarna-

Sub1 treatment. While this test is imperfect because it relies on non-experimental variation,

the results are mostly inconsistent with our results being driven by how the technology shifts

the mean level of output.
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5.3 Other alternative explanations

An additional potential income effect is that cultivation of the new seed variety during year

one led to a boost in agricultural income which then crowded in improved inputs and practices

during the following year. Our results do not appear consistent with this explanation for

two reasons. First, the fact that we observe moderate impacts immediately during year one

suggests that wealth effects from crop output during year one do not entirely explain our

results during year two. Second, as another piece of evidence, we use data on the total

quantity of rice harvested during the first year as a measure of the wealth that would have

been influenced by being treated. If increases in wealth due to the new technology led to

the changes we observe during year two, then controlling for the year one harvest should

attenuate our main estimates. We show in Table A17 that none of our main estimates are

affected when conditioning on the year one total harvest.

Are differences in output prices responsible for our results? We collected information

on prices received by variety from each farmer that sold any output after the second year

of the study. The average price received for Swarna was 10.29 Rupees per kilogram and

the average price received for Swarna-Sub1 was 10.76.36 This 4.6% difference in prices is

statistically significant at the 5% level. Since the eating quality of the two varieties is similar

(see Figure A1), this difference in prices could possibly be due to increased value of output

as seed rather than grain for consumption.

There is no evidence that output prices drive the results. Descriptively, only 40% of

farmers sold any rice following the second year and on average only 17% of the harvest was

sold as grain for consumption, suggesting that effects of output price differences are likely to

be small. We consider this possibility further by separate estimation of the main results for

the subsample of farmers that did not sell any rice following the second year.37 If prices are

explaining the results, then the effects of the technology should be smaller in this sub-sample.

We show in Table A18 that this is not the case. This evidence is not consistent with output

prices being the relevant channel for our results.

36The government’s paddy procurement program set the minimum support price (MSP) for the 2012
harvest at 12.5 Rupees per kilogram. Many farmers in our sample sell instead to private traders at prices
below this level.

37A problem with this approach is that the sample is being split according to an endogenous outcome.
The most plausible effect of sample selection in this case is that the group of farmers selling rice are the
largest and wealthiest farmers that have the most capacity to respond after having access to Swarna-Sub1.
For instance, average landholdings of farmers that do not sell output are 50% less than the landholdings of
those selling output. This would then work against us finding any effects in the subsample of farmers not
selling output.
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6 Conclusions

This paper has shown that technological progress in agriculture can have the important

effect of crowding in the use of both more productive cultivation practices and modern

inputs. This suggests that lack of more productive and resilient technology can be at least a

partial reason why smallholder farmers in developing countries often fail to adopt improved

production practices and use few modern inputs. We have focused on new rice varieties that

reduce downside risk through enhanced flood tolerance.

Additional calculations suggested that much of the gains from these new technologies

come from this crowding-in effect. By inducing more use of a labor intensive planting method,

increased investments in fertilizer, increased uptake of credit, and displacing traditional seed

varieties, technology boosts productivity. Put differently, the absence of seed varieties that

are well-adapted to local conditions causes farmers to opt for traditional low-input and low

productivity cultivation strategies. Our best estimate indicates that no less than 43% of the

expected gains from seed varieties that reduce downside risk can be attributed to crowd-in

effects.

These results provide the first evidence on how technological progress that reduces down-

side risk in agriculture can modernize farming in areas where production risk is high. While

the technology in our experiment has already been adopted by around 3 million farmers

in India alone (Ismail et al., 2013), technological progress that makes seed varieties more

tolerant to weather extremes is not unique to India. Since 2011, new rice varieties that are

tolerant to either flooding, drought, or extreme cold temperatures have been released in 11

countries in South Asia and Africa alone.

These results suggest that efforts to improve technology by reducing the susceptibility

of commonly used seeds to weather extremes can go a long way in increasing agricultural

productivity. While the Green Revolution was successful at increasing agricultural produc-

tivity in favorable areas throughout the world, productivity in rainfed areas under weather

stress remains low. Using flood tolerance as an example, we have shown that technological

advances that improve resilience can further enhance agricultural productivity by causing

farmers to re-optimize their production practices. Not accounting for this re-optimization as

a result of technological change leads to a large under-estimation of the return from investing

in research and development in agriculture.
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Tables

Table 1: Characteristics of sample villages and other low-lying villages in Odisha, West
Bengal, and Bihar

In experiment Other villages in 3 states
Number households 177.72 307.66

(175.536) (408.872)

Household size 5.31 5.26
(0.891) (0.843)

Share Scheduled Caste 0.20 0.23
(0.202) (0.246)

Share Scheduled Tribe 0.09 0.07
(0.181) (0.183)

Share cultivating land 0.12 0.09
(0.069) (0.067)

Share agricultural laborers 0.06 0.09
(0.066) (0.082)

Literacy rate 0.60 0.51
(0.110) (0.182)

All data are taken from the 2001 population census. Column 1 pertains to 125 villages in Odisha that were
part of the experiment. 3 of the 128 sample villages were not successfully matched to the 2001 census.
Column 2 pertains to the other 55,324 villages in Odisha, Bihar, and West Bengal that have an elevation of
less than 56 meters (the maximum elevation of the sample villages). Numbers in parentheses are standard
deviations.
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Table 2: Mean values of household characteristics and flood exposure of plots by treatment
status

Control Treatment P-value of difference
Panel A: Household characteristics

Land owned in hectares 0.810 0.868 0.22

HH has private tubewell 0.332 0.325 0.82

HH has piped water 0.035 0.057 0.09

HH has refrigerator 0.078 0.076 0.92

HH has television 0.628 0.605 0.46

Education of farmer 6.896 6.946 0.83

Age of farmer 51.191 51.783 0.44

HH has thatched roof 0.557 0.548 0.78

HH has latrine 0.289 0.354 0.03

HH has electricity 0.843 0.822 0.38

HH has below poverty line card 0.574 0.559 0.64

ST or SC 0.189 0.176 0.61

Panel B: Flood exposure of cultivated plots

Share plots low land 0.335 0.357 0.37

Share plots medium land 0.569 0.571 0.94

Share plots high land 0.081 0.067 0.34

Average flood duration in year 1 5.518 5.887 0.23
Joint p-value of household characteristics 0.26

Data are from year 1 follow-up. Values in columns 1 and 2 are means. P-values in column 3 are based on
t-tests of equality of means. ST refers to Scheduled Tribe and SC refers to Scheduled Caste. The p-value
from the joint regression is the p-value from the joint test of all covariates when treatment assignment is
regressed on all covariates.
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Table 3: Effects on cultivation practices
Panel A: Year 1

(1) (2) (3) (4) (5)
Area planted Log area Use Swarna Use TV Broadcast

Original minikit 0.068 0.088∗ -0.157∗∗∗ -0.029∗ -0.022∗

recipient (0.045) (0.048) (0.018) (0.016) (0.012)

Block Fixed Effects Yes Yes Yes Yes Yes
Mean of Dep Variable 0.92 -0.36 0.47 0.21 0.10
Number of Observations 1248 1238 4215 4214 4221
R squared 0.167 0.197 0.129 0.153 0.094

Panel B: Year 2

(1) (2) (3) (4) (5)
Area planted Log area Use Swarna Use TV Broadcast

Original minikit 0.109∗ 0.098∗∗ -0.101∗∗∗ -0.041∗∗ -0.063∗∗∗

recipient (0.056) (0.044) (0.017) (0.016) (0.017)

Block Fixed Effects Yes Yes Yes Yes Yes
Mean of Dep Variable 1.00 -0.20 0.36 0.28 0.19
Number of Observations 1237 1175 4589 4588 4582
R squared 0.112 0.161 0.115 0.270 0.242

Dependent variable is total rice area planted in hectares (column 1), log of total rice area (column 2), and
indicator for using Swarna on the plot (column 3), an indicator for using a traditional seed variety on the
plot (column 4) and an indicator for planting the plot using the broadcasting technique (column 5). The
observations are at the farmer level in columns 1 and 2 and at the plot level in columns 3 through 5.
Standard errors that are clustered at the village level are reported in parentheses. Asterisks indicate
statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 4: Effects on fertilizer usage during year two, conditional on cultivated area
(1) (2) (3) (4) (5)
All Urea DAP MOP Gromor

Original minikit recipient 396.703∗∗ 13.428 393.768∗∗∗ 90.579 -101.073
(179.631) (34.372) (136.410) (58.170) (67.759)

Rice area (hectares) 3835.891∗∗∗ 694.814∗∗∗ 2288.634∗∗∗ 623.535∗∗∗ 228.909∗∗∗

(315.559) (108.483) (253.521) (132.287) (66.481)

Block Fixed Effects Yes Yes Yes Yes Yes
Mean of Dep Variable 3781.48 664.70 2016.80 702.82 397.15
Number of Observations 1237 1237 1237 1237 1237
R squared 0.619 0.496 0.526 0.279 0.064

Dependent variable is fertilizer expenditure in Rupees. The column labels indicate the type of fertilizer.
All observations are from year two of the experiment and are at the farmer level. Standard errors that are
clustered at the village level are reported in parentheses. Asterisks indicate statistical significance at the
1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 5: Effects on rice storage and credit uptake
Panel A: Year 1

(1) (2) (3) (4) (5)
Storage Rate Storage Rate Loan Coop Loan Other Loan

Original minikit -0.026 -0.016 0.063 0.033 0.030
recipient (0.015) (0.027) (0.039) (0.028) (0.032)

Original minikit -0.017
recipient*HH has BPL card (0.034)

Block Fixed Effects Yes Yes Yes Yes Yes
Mean of Dep Variable 0.73 0.73 0.43 0.24 0.19
Number of Observations 1183 1180 1248 1248 1248
R squared 0.113 0.117 0.122 0.154 0.055

Panel B: Year 2

(1) (2) (3) (4) (5)
Storage Rate Storage Rate Loan Coop Loan Other Loan

Original minikit -0.050∗∗∗ -0.085∗∗∗ 0.068∗∗ 0.050∗∗ 0.023
recipient (0.017) (0.024) (0.027) (0.024) (0.019)

Original minikit 0.061∗∗

recipient*HH has BPL card (0.031)

Block Fixed Effects Yes Yes Yes Yes Yes
Mean of Dep Variable 0.70 0.70 0.19 0.12 0.08
Number of Observations 1167 1164 1237 1230 1237
R squared 0.070 0.073 0.058 0.057 0.014

Dependent variable is the share of the total rice harvest that was stored for future consumption (columns 1
and 2), an indicator for having a loan (column 3), an indicator for having a loan from an agricultural
cooperative (column 4), and an indicator for having a loan from another source (column 5). Other sources
are banks, input sellers, Self-Help groups, MFI’s, friends/relatives, or money lenders. Standard errors that
are clustered at the village level are reported in parentheses. Asterisks indicate statistical significance at
the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table 6: Effects on productivity
Year 1 Year 2

(1) (2) (3) (4) (5)
Original minikit recipient 314.97∗∗∗ 283.45∗∗∗ 230.30∗∗∗ 196.54∗∗∗ 169.14∗∗

(86.28) (77.48) (73.73) (68.06) (64.84)

Broadcast planting -801.22∗∗∗ -679.36∗∗∗ -419.08∗∗∗

(129.45) (117.53) (108.50)

Tons fertilizer per hectare 4350.39∗∗∗ 3237.30∗∗∗

(997.70) (831.35)

Tons fertilizer per hectare2 -4025.26∗∗ -2942.84∗∗

(1628.52) (1266.48)

Traditional variety -442.46∗∗∗

(70.86)

Irrigated 711.64∗∗∗

(92.21)

Has credit 150.79∗∗

(69.04)

Block Fixed Effects Yes Yes Yes Yes Yes
Mean of Dep Variable 2213.39 2817.97 2819.53 2819.53 2819.13
Number of Observations 4184 4573 4568 4568 4514
R squared 0.409 0.159 0.200 0.236 0.302

Dependent variable in all regressions is yield in kg/hectare. Estimation data are at the plot level.
Broadcast planting, traditional variety, and irrigated are measured at the plot level; fertilizer per hectare
and credit are measured at the farmer level. Standard errors that are clustered at the village level are
reported in parentheses. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Figures

Figure 1: Location of villages in Odisha
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Figure 2: Kernel densities of plot-level yield by treatment status
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Notes: Figure displays estimated kernel densities of yield (kg per ha) for both years of the study. Densities
are estimated across all cultivated plots. The blue dashed lines are densities for all plots cultivated by
minikit recipients, regardless of seed variety choice on those plots. The black lines are densities for all plots
cultivated by control farmers.
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Figure 3: Distribution of flooding for sample plots: 2002-2008 and 2011-2014
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Notes: Figure shows the distribution of flooding across time for 1,123 plots that were cultivated by farmers
in our sample during year 1 of the study. The height of each bar is the share of the 1,123 plots that were
flooded at least once during the relevant season. Satellite imagery from MODIS for the years 2002-2008
and 2011-2014 were matched with the GIS coordinates of the plot to determine whether a given plot was
flooded in each year. The horizontal dashed line represents the overall probability of flooding for plots in
the sample, which is 0.19 across the 11 years.
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Appendix - For Online Publication

Table A1: Knowledge and adoption of Swarna-Sub1 by control farmers
Knowledge Adoption

(1) (2) (3) (4)
Treatment village 0.293∗∗∗ 0.299∗∗∗ 0.100∗∗∗ 0.094∗∗∗

(0.044) (0.045) (0.023) (0.023)

Block Fixed Effects Yes Yes Yes Yes

Household controls No Yes No Yes
Mean of Dep Variable 0.62 0.62 0.10 0.10
Number of Observations 928 921 928 921
R squared 0.118 0.126 0.104 0.116

All observations are from year 2 follow-up survey. Dependent variable in columns 1 and 2 is an indicator
variable for ever hearing of Swarna-Sub1 at the time of the second year follow-up. Dependent variable in
columns 3 and 4 is an indicator variable for adoption of Swarna-Sub1 during year 2. Standard errors that
are clustered at the village level are reported in parentheses. Asterisks indicate statistical significance at
the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Figure A1: Stated reasons for choosing rice varieties during year 2
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Figure displays percentage of farmers (Swarna and Swarna-Sub1) and percentage of farmer-variety pairs
(TV) for which the characteristic on the horizontal axis is a reason the variety was chosen during year 2.
For example, over 90% of farmers cultivating Swarna stated that high yield was one of the reasons for this
choice (first grey bar above yield).
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Figure A2: Nonparametric regressions of yield and crop survival on duration of flooding
during year one
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Notes: Figure displays fan regressions of yield and crop survival (0/1) on duration of submergence.
Estimates are for year one when flooding occurred in part of the sample area.
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Figure A3: Timing of fertilizer applications during first year of study
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Notes: Figure displays cumulative share of each fertilizer applied by each day in the growing season, where
timing is measured in days after planting. Data are for farmers surveyed during the follow-up after year
one. Urea is source of nitrogen (N), DAP is primary source of phosphorous (P) and MOP is the source of
potassium (K).
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Table A2: Effects on cultivation practices with household controls
Panel A: Year 1

(1) (2) (3) (4) (5)
Area planted Log area Use Swarna Use TV Broadcast

Original minikit 0.025 0.049 -0.155∗∗∗ -0.030∗ -0.027∗∗

recipient (0.031) (0.037) (0.018) (0.015) (0.013)

Block Fixed Effects Yes Yes Yes Yes Yes

Household controls Yes Yes Yes Yes Yes
Mean of Dep Variable 0.92 -0.36 0.47 0.21 0.11
Number of Observations 1238 1228 4182 4181 4188
R squared 0.652 0.602 0.137 0.168 0.122

Panel B: Year 2

(1) (2) (3) (4) (5)
Area planted Log area Use Swarna Use TV Broadcast

Original minikit 0.079∗ 0.076∗∗ -0.103∗∗∗ -0.040∗∗ -0.062∗∗∗

recipient (0.045) (0.035) (0.018) (0.016) (0.017)

Block Fixed Effects Yes Yes Yes Yes Yes

Household controls Yes Yes Yes Yes Yes
Mean of Dep Variable 1.00 -0.20 0.36 0.28 0.19
Number of Observations 1227 1165 4477 4476 4470
R squared 0.387 0.409 0.121 0.280 0.253

Dependent variable is total rice area planted in hectares (column 1), log of total rice area (column 2), an
indicator for using Swarna on the plot (column 3), an indicator for using a traditional seed variety on the
plot (column 4) and an indicator for planting the plot using the broadcasting technique (column 5). The
observations are at the farmer level in columns 1 and 2 and at the plot level in columns 3 and 4. Household
controls are all covariates in Panel A of Table 2 of the main text. Standard errors that are clustered at the
village level are reported in parentheses. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and
10% ∗ levels.
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Table A3: Effects on fertilizer usage during year two with household controls
(1) (2) (3) (4) (5)
All Urea DAP MOP Gromor

Original minikit recipient 397.425∗∗ 12.748 395.939∗∗∗ 94.914∗ -106.178
(170.766) (32.999) (133.021) (56.425) (70.838)

Rice area (hectares) 3986.428∗∗∗ 777.545∗∗∗ 2344.337∗∗∗ 633.036∗∗∗ 231.510∗∗∗

(382.500) (136.847) (307.059) (176.412) (87.886)

Block Fixed Effects Yes Yes Yes Yes Yes

Household controls Yes Yes Yes Yes Yes
Mean of Dep Variable 3786.37 665.80 2020.46 702.86 397.25
Number of Observations 1227 1227 1227 1227 1227
R squared 0.629 0.522 0.532 0.295 0.072

Dependent variable is fertilizer expenditure in Rupees. The column labels indicate the type of fertilizer.
All observations are from year two of the experiment and are at the farmer level. Household controls are all
covariates in Panel A of Table 2 of the main text. Standard errors that are clustered at the village level are
reported in parentheses. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A4: Effects on rice storage and credit uptake with household controls
Panel A: Year 1

(1) (2) (3) (4) (5)
Storage Rate Storage Rate Credit Coop Loan Other Loan

Original minikit -0.026∗ -0.012 0.059 0.033 0.026
recipient (0.014) (0.024) (0.039) (0.029) (0.032)

Original minikit -0.024
recipient*HH has BPL card (0.032)

Block Fixed Effects Yes Yes Yes Yes Yes

Household controls Yes Yes Yes Yes Yes
Mean of Dep Variable 0.73 0.73 0.43 0.24 0.19
Number of Observations 1175 1175 1238 1238 1238
R squared 0.172 0.172 0.147 0.163 0.078

Panel B: Year 2

(1) (2) (3) (4) (5)
Storage Rate Storage Rate Credit Coop Loan Other Loan

Original minikit -0.047∗∗∗ -0.081∗∗∗ 0.064∗∗ 0.049∗∗ 0.018
recipient (0.018) (0.024) (0.027) (0.024) (0.020)

Original minikit 0.061∗∗

recipient*HH has BPL card (0.030)

Block Fixed Effects Yes Yes Yes Yes Yes

Household Controls Yes Yes Yes Yes Yes
Mean of Dep Variable 0.69 0.69 0.19 0.12 0.08
Number of Observations 1157 1157 1227 1220 1227
R squared 0.094 0.097 0.077 0.076 0.031

Dependent variable is the share of the total rice harvest that was stored for future consumption (columns 1
and 2), an indicator for having a loan (column 3), an indicator for having a loan from an agricultural
cooperative (column 4), and an indicator for having a loan from another source (column 5). Other sources
are banks, input sellers, Self-Help groups (SHG’s), MFI’s, friends/relatives, or money lenders. Household
controls are all covariates in Panel A of Table 2 of the main text. Standard errors that are clustered at the
village level are reported in parentheses. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and
10% ∗ levels.

48



Table A5: Effects on productivity with household controls
Year 1 Year 2

(1) (2) (3) (4) (5)
Original minikit recipient 316.75∗∗∗ 299.92∗∗∗ 248.70∗∗∗ 215.41∗∗∗ 187.07∗∗∗

(89.62) (76.68) (73.51) (68.24) (65.69)

Broadcast planting -786.57∗∗∗ -657.66∗∗∗ -388.22∗∗∗

(127.03) (115.31) (104.70)

Tons fertilizer per hectare 4386.63∗∗∗ 3339.31∗∗∗

(980.85) (815.51)

Tons fertilizer per hectare2 -3924.83∗∗ -2939.92∗∗

(1592.65) (1251.44)

Traditional variety -460.26∗∗∗

(70.36)

Irrigated 712.93∗∗∗

(93.73)

Has credit 136.09∗∗

(68.06)

Block Fixed Effects Yes Yes Yes Yes Yes

Household Controls Yes Yes Yes Yes Yes
Mean of Dep Variable 2220.76 2809.62 2811.20 2811.20 2810.69
Number of Observations 4151 4461 4456 4456 4402
R squared 0.421 0.179 0.218 0.254 0.320

Dependent variable in all regressions is yield in kg/hectare. Estimation data are at the plot level. All
independent variables are measured at the plot level, except for fertilizer per hectare, which is measured at
the farmer level. Household controls are all covariates in Panel A of Table 2 of the main text. Standard
errors that are clustered at the village level are reported in parentheses. Asterisks indicate statistical
significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A7: Effects on fallowing of plots cultivated in year 1 during year 2
(1) (2) (3)

Original minikit -0.023∗ -0.018 -0.018∗

recipient (0.012) (0.013) (0.010)

Minikit*Low land -0.030
(0.020)

Low land 0.015
(0.016)

Minikit*Low quality -0.071∗∗

land (0.036)

Low quality land 0.119∗∗∗

(0.025)

Block Fixed Effects Yes Yes Yes
Mean of Dep Variable 0.08 0.07 0.07
Number of Observations 5068 5047 5012
R squared 0.019 0.021 0.038

Dependent variable in all regressions is an indicator for whether the plot was fallowed during year 2 of the
study. Standard errors that are clustered at the village level are reported in parentheses. Asterisks indicate
statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A8: Decomposition of area effects
(1) (2)

Number plots Plot size
Original minikit recipient 0.68∗∗∗ -0.02∗

(0.13) (0.01)

Block Fixed Effects Yes Yes
Mean of Dep Variable 3.57 0.27
Number of Observations 1237 4589
R squared 0.100 0.040

The unit of observation is the farmer in column 1 and the plot in column 2. The dependent variable in
column 1 is the total number of rice plots cultivated in year two. The dependent variable in column 2 is
the size of the plot, measured in hectares. Standard errors that are clustered at the village level are
reported in parentheses. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A10: Adjustment of p-values for multiple hypothesis testing

Outcome Mean outcome Point estimate Unadj. p-value FDR adj. p-value

Broadcasting 0.186 -0.063 0.000 0.003
Use TV 0.284 -0.041 0.011 0.031
Use Swarna 0.359 -0.101 0.000 0.001
Plot yield 2,817.971 283.449 0.000 0.003
Irrigated 0.737 0.033 0.267 0.315
Log seed rate 4.158 -0.041 0.037 0.068
Plot sharecropped in 0.155 -0.021 0.169 0.226
Rice area, ha 1.002 0.109 0.063 0.105
Storage rate 0.696 -0.050 0.004 0.019
Has credit 0.187 0.068 0.012 0.031
Use pesticide 0.776 0.060 0.024 0.053
Has dry season crop 0.228 -0.003 0.900 0.900
Has ag. labor income 0.483 -0.036 0.267 0.315
Sold rice seeds 0.052 0.016 0.337 0.375
Has livestock income 0.369 -0.076 0.010 0.031
Extension contact 0.213 0.069 0.027 0.054
Urea expenditure 664.704 13.428 0.697 0.734
DAP expenditure 2,016.799 393.768 0.005 0.019
MOP expenditure 702.823 90.579 0.122 0.188
Gromor expenditure 397.154 -101.073 0.138 0.198

The data consists of the agricultural outcome variables from our year 2 follow-up survey. The first column
displays the mean value of the outcome variable across the entire sample. The second column gives the
point estimate from a regression of the outcome on the farmer-level treatment indicator and block fixed
effects. The third column displays p-values that are not adjusted for multiple hypothesis testing. The
fourth column shows p-values from Benjamini, Krieger, and Yekutieli (2006) that are adjusted to control
the false discovery rate, i.e. the share of rejections of the null that are false. All p-values are based on
standard errors that are clustered at the village level.
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Table A12: Relationship between planting of Swarna-Sub1 and plot-level characteristics
Farmers:

(1) (2) (3)
All Treatment Control

Area of field -0.079∗∗∗ -0.189∗∗∗ -0.016
(0.023) (0.067) (0.015)

Owned land 0.043∗∗∗ 0.113∗∗∗ 0.012
(0.012) (0.042) (0.008)

Low land -0.020∗ -0.071∗∗ -0.002
(0.011) (0.031) (0.007)

Bad quality land -0.005 0.018 -0.018∗

(0.015) (0.038) (0.010)

Field has tubewell irrigation 0.021 -0.006 0.015
(0.019) (0.041) (0.012)

Block Fixed Effects Yes Yes Yes
Mean of Dep Variable 0.10 0.26 0.04
Number of Observations 4575 1312 3263
R squared 0.02 0.05 0.03

The dependent variable in all regressions is an indicator for fields that were planted with Swarna-Sub1.
Low land is land that farmers reported was lowest in elevation in the village (on a scale from 1-3). Bad
quality land is land that farmers reported to have below-average land quality. Standard errors that are
clustered at the village level are reported in parentheses. Asterisks indicate statistical significance at the
1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A13: Correlates of plot characteristics with minikit treatment for sample of plots not
cultivated with Swarna-Sub1

Sample:

(1) (2)
All Non-Sub1 trimmed

Low land 0.018 0.022
(0.022) (0.022)

Area of field -0.033 -0.027
(0.043) (0.044)

Bad quality land 0.027 0.026
(0.032) (0.033)

Owned land 0.011 0.015
(0.025) (0.025)

Field has tubewell irrigation 0.068 0.065
(0.041) (0.042)

Block Fixed Effects Yes Yes
Mean of Dep Variable 0.24 0.25
Number of Observations 4087 3903
R squared 0.01 0.01

The dependent variable in both regressions is an indicator for plots cultivated by treatment farmers.
Column 1 contains all plots that were not cultivated with Swarna-Sub1. Column 2 contains all of these
plots, but then drops the lowest-productivity plot of each control farmer with a probability of 0.2354. Low
land is land that farmers reported was lowest in elevation in the village (on a scale from 1-3). Bad quality
land is land that farmers reported to have below-average land quality. Standard errors that are clustered at
the village level are reported in parentheses. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗,
and 10% ∗ levels.
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Table A15: Relationship between total rice output and flood exposure during year one for
control farmers

(1) (2)
Flood exposure in days -90.305∗∗∗ -90.352∗∗∗

(28.715) (26.765)

Block Fixed Effects Yes Yes

Household controls No Yes
Mean of Dep Variable 1738.91 1740.38
Number of Observations 928 921
R squared 0.123 0.364

The data include observations for control farmers only. The dependent variable in both columns is the
total rice harvest during year one. Flood exposure in days is the area-weighted average number of days the
farmer’s fields were flooded. Household controls are all covariates in Panel A of Table 2 of the main text.
Standard errors that are clustered at the village level are reported in parentheses. Asterisks indicate
statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A16: Comparison of effects of Swarna-Sub1 treatment with effects of a flood shock
with the same expected increase in rice production

Outcome Sub1 treatment Equivalent flood shock

Rice area 0.109∗ 0.008
(0.056) (0.013)

Log rice area 0.098∗∗ 0.016
(0.044) (0.011)

Use Swarna -0.101∗∗∗ -0.002
(0.017) (0.004)

Use TV -0.041∗∗ 0.007
(0.016) (0.005)

Broadcast planting -0.063∗∗∗ 0.004
(0.017) (0.007)

All fertilizer 396.703∗∗ -81.134∗

(179.631) (44.627)

Urea 13.428 -21.017∗

(34.372) (11.149)

DAP 393.768∗∗∗ -52.922
(136.410) (34.474)

MOP 90.579 -1.992
(58.170) (14.587)

Gromor -101.073 -5.202
(67.759) (20.772)

Share saved -0.050∗∗∗ -0.002
(0.017) (0.004)

Has credit 0.068∗∗ -0.008
(0.027) (0.006)

Yield 283.449∗∗∗ -7.548
(77.484) (21.127)

Each entry in the table is from a separate regression. Entries in the first column are the effects of the
Swarna-Sub1 treatment as reported in Tables 3 to 6. Each regression in column 2 shows the coefficient from
a regression of the listed outcome variable on the number of flood days the farmer was exposed to in year 1
divided by 1.4, controlling for block fixed effects. This “equivalent shock” variable is constructed so that a
one unit decrease is equivalent to 126.67 kilograms of rice, which is the expected output gain that treatment
farmers could expect from planting 0.33 hectares of area with Swarna-Sub1. The regressions in column 2
use observations from the control group only. Standard errors in parentheses are clustered at the village
level for all regressions. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A17: Estimation of main results conditioning on the year 1 rice harvest
Plot level Farmer level

(1) (2) (3) (4) (5) (6)
Yield Use TV Broadcast Fertilizer Share saved Credit

Original minikit 275.834∗∗∗ -0.039∗∗ -0.062∗∗∗ 350.188∗ -0.043∗∗ 0.065∗∗

recipient (77.658) (0.016) (0.017) (182.558) (0.017) (0.027)

2011 rice harvest 21.122 -0.005 -0.004 216.455∗∗ -0.022∗∗∗ 0.009
(tons) (16.863) (0.004) (0.003) (95.097) (0.004) (0.006)

Rice area (hectares) 3540.807∗∗∗

(375.751)

Block Fixed Effects Yes Yes Yes Yes Yes Yes
Mean of Dep Variable 2817.97 0.28 0.19 3781.48 0.70 0.19
Number of Observations 4573 4588 4582 1237 1167 1237
R squared 0.161 0.271 0.243 0.627 0.102 0.060

Estimation data are at the plot level in columns 1-4 and the farmer level in columns 5-8. Dependent
variables are rice yield in kg/ha (column 1), an indicator for sowing plot with a traditional rice variety
(column 2), an indicator for planting using the broadcasting technique (column 3), an indicator for plot not
being cultivated (column 4), total fertilizer use (column 5), number of plots cultivated with rice (column
6), share of harvest consumed or saved for consumption (column 7), and indicator for access to credit
(column 8). Standard errors that are clustered at the village level are reported in parentheses. Asterisks
indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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